Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Parallelization Scheme for Canonical Polyadic Decomposition of Large-Scale High-Order Tensors

Abstract : Modeling multidimensional data using tensor models, in particular through the Canonical Polyadic (CP) model, can be found in large numbers of timely and important signal based applications. However, the computational complexity in the case of high-order and large-scale tensors remains a challenge that prevents the implementation of the CP model in practice. While some algorithms, in the literature, deal with large-scale problems, others target high-order tensors. Nevertheless, these algorithms encounter major issues when both problems are present. In this paper, we propose a parallelizable strategy, based on the tensor network theory, to deal simultaneously with both high-order and large-scale problems. We show the usefulness of the proposed strategy in reducing the computational time on a realistic electroencephalography data set.
Liste complète des métadonnées

https://hal.univ-lille.fr/hal-03613806
Contributeur : Remy Boyer Connectez-vous pour contacter le contributeur
Soumis le : vendredi 18 mars 2022 - 17:32:26
Dernière modification le : lundi 28 mars 2022 - 08:05:30

Fichier

Final_Correction_SP.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03613806, version 1

Citation

Abdelhak Boudehane, Laurent Albera, Arthur Tenenhaus, Laurent Le Brusquet, Remy Boyer. Parallelization Scheme for Canonical Polyadic Decomposition of Large-Scale High-Order Tensors. Signal Processing, Elsevier, In press. ⟨hal-03613806⟩

Partager

Métriques

Consultations de la notice

40

Téléchargements de fichiers

12