Parallelization Scheme for Canonical Polyadic Decomposition of Large-Scale High-Order Tensors - Université de Lille Accéder directement au contenu
Article Dans Une Revue Signal Processing Année : 2022

Parallelization Scheme for Canonical Polyadic Decomposition of Large-Scale High-Order Tensors

Résumé

Modeling multidimensional data using tensor models, in particular through the Canonical Polyadic (CP) model, can be found in large numbers of timely and important signal based applications. However, the computational complexity in the case of high-order and large-scale tensors remains a challenge that prevents the implementation of the CP model in practice. While some algorithms, in the literature, deal with large-scale problems, others target high-order tensors. Nevertheless, these algorithms encounter major issues when both problems are present. In this paper, we propose a parallelizable strategy, based on the tensor network theory, to deal simultaneously with both high-order and large-scale problems. We show the usefulness of the proposed strategy in reducing the computational time on a realistic electroencephalography data set.
Fichier principal
Vignette du fichier
Final_Correction_SP.pdf (2.32 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03613806 , version 1 (18-03-2022)

Identifiants

Citer

Abdelhak Boudehane, Laurent Albera, Arthur Tenenhaus, Laurent Le Brusquet, Remy Boyer. Parallelization Scheme for Canonical Polyadic Decomposition of Large-Scale High-Order Tensors. Signal Processing, 2022, 199, pp.108610. ⟨10.1016/j.sigpro.2022.108610⟩. ⟨hal-03613806⟩
150 Consultations
110 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More