Low-Frequency Raman Spectroscopy: An Exceptional Tool for Exploring Metastability Driven States Induced by Dehydration - Université de Lille
Article Dans Une Revue Pharmaceutics Année : 2023

Low-Frequency Raman Spectroscopy: An Exceptional Tool for Exploring Metastability Driven States Induced by Dehydration

Résumé

The use of low-frequency Raman spectroscopy (LFRS; ω < 150 cm−1) is booming in the pharmaceutical industry. Specific processing of spectra is required to use the wealth of information contained in this spectral region. Spectra processing and the use of LFRS for analyzing phase transformations in molecular materials are detailed herein from investigations on the devitrification of ibuprofen. LFRS was used to analyze the dehydration mechanism of two hydrates (theophylline and caffeine) of the xanthine family. Two mechanisms of solid-state transformation in theophylline were determined depending on the relative humidity (RH) and temperature. At room temperature and 1% RH, dehydration is driven by the diffusion mechanism, while under high RH (>30%), kinetic laws are typical of nucleation and growth mechanism. By increasing the RH, various metastability driven crystalline forms were obtained mimicking successive intermediate states between hydrate form and anhydrous form achieved under high RH. In contrast, the dehydration kinetics of caffeine hydrate under various RH levels can be described by only one master curve corresponding to a nucleation mechanism. Various metastability driven states were achieved depending on the RH, which can be described as intermediate between forms I and II of anhydrous caffeine.
Fichier principal
Vignette du fichier
Low-Frequency Raman Spectroscopy-An Exceptional Tool for Exploring Metastability Driven States Induced by Dehydration.pdf (11.46 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04279492 , version 1 (10-11-2023)

Licence

Identifiants

Citer

Yannick Guinet, Laurent Paccou, Alain Hedoux. Low-Frequency Raman Spectroscopy: An Exceptional Tool for Exploring Metastability Driven States Induced by Dehydration. Pharmaceutics, 2023, Pharmaceutics, 15 (7), pp.1955. ⟨10.3390/pharmaceutics15071955⟩. ⟨hal-04279492⟩
31 Consultations
9 Téléchargements

Altmetric

Partager

More