Performance of meta-predictors for the classification of MED13L missense variations, implication of raw parameters. - Université de Lille Accéder directement au contenu
Article Dans Une Revue European Journal of Medical Genetics Année : 2021

Performance of meta-predictors for the classification of MED13L missense variations, implication of raw parameters.

Résumé

MED13L syndrome is a rare congenital disorder comprising moderate intellectual disability, hypotonia and facial dysmorphism. Whole exome or genome sequencing in patients with non-specific neurodevelopmental disorders leads to identification of an increasing number of MED13L missense variations of unknown signification. The aim of our study was to identify relevant annotation parameters enhancing discrimination between candidate pathogenic or neutral missense variations, and to assess the performance of seven meta-predictor algorithms: BayesDel, CADD, DANN, FATHMM-XF, M-CAP, MISTIC and REVEL for the classification of MED13L missense variants. Significant differences were identified for five parameters: global conservation through verPhyloP and verPhCons scores; physico-chemical difference between amino acids estimated by Grantham scores; conservation of residues between MED13L and MED13 protein; proximity to phosphorylation sites for pathogenic variations. Among the seven selected in-silico tools, BayesDel, REVEL, and MISTIC provided the most interesting performances to discriminate pathogenic from neutral missense variations.Individual gene parameter studies with MED13L have provided expertise on elements of annotation improving meta-predictor choices. The in-silico approach allows us to make valuable hypotheses to predict the involvement of these amino acids in MED13L pathogenic missense variations.
Fichier principal
Vignette du fichier
S1769721221002640.pdf (271.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04470913 , version 1 (22-07-2024)

Licence

Identifiants

Citer

Thomas Smol, Frederic Frenois, Sylvie Manouvrier, Florence Petit, Jamal Ghoumid. Performance of meta-predictors for the classification of MED13L missense variations, implication of raw parameters.. European Journal of Medical Genetics, 2021, European Journal of Medical Genetics, 65, pp.104398. ⟨10.1016/j.ejmg.2021.104398⟩. ⟨hal-04470913⟩

Collections

UNIV-LILLE
10 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More