Multivariate Curve Resolution Slicing of Multiexponential Time-Resolved Spectroscopy Fluorescence Data.
Résumé
Time-resolved fluorescence spectroscopy (TRFS), i.e., measurement of fluorescence decay curves for different excitation and/or emission wavelengths, provides specific and sensitive local information on molecules and on their environment. However, TRFS relies on multiexponential data fitting to derive fluorescence lifetimes from the measured decay curves and the time resolution of the technique is limited by the instrumental response function (IRF). We propose here a multivariate curve resolution (MCR) approach based on data slicing to perform tailored and fit-free analysis of multiexponential fluorescence decay curves. MCR slicing, taking as a basic framework the multivariate curve resolution-alternating least-squares (MCR-ALS) soft-modeling algorithm, relies on a hybrid bilinear/trilinear data decomposition. A key feature of the method is that it enables the recovery of individual components characterized by decay profiles that are only partially describable by monoexponential functions. For TRFS data, not only pure multiexponential tail information but also shorter time delay information can be decomposed, where the signal deviates from the ideal exponential behavior due to the limited time resolution. The accuracy of the proposed approach is validated by analyzing mixtures of three commercial dyes and characterizing the mixture composition, lifetimes, and associated contributions, even in situations where only ternary mixture samples are available. MCR slicing is also applied to the analysis of TRFS data obtained on a photoswitchable fluorescent protein (rsEGFP2). Three fluorescence lifetimes are extracted, along with the profile of the IRF, highlighting that decomposition of complex systems, for which individual isomers are characterized by different exponential decays, can also be achieved.