Collinear-spin machine learned interatomic potential for Fe7Cr2Ni alloy - Université de Lille
Article Dans Une Revue Physical Review Materials Année : 2024

Collinear-spin machine learned interatomic potential for Fe7Cr2Ni alloy

Résumé

We have developed a machine learned interatomic potential for the prototypical austenitic steel Fe7Cr2Ni, using the Gaussian approximation potential (GAP) framework. This GAP can model the alloy's properties with close to density functional theory (DFT) accuracy, while at the same time allowing us to access larger length and time scales than expensive first-principles methods. We also extended the GAP input descriptors to approximate the effects of collinear spins (spin GAP), and demonstrate how this extended model successfully predicts structural distortions due to antiferromagnetic and paramagnetic spin states. We demonstrate the application of the spin GAP model for bulk properties and vacancies and validate against DFT. These results are a step towards modeling the atomistic origins of ageing in austenitic steels with higher accuracy.
Fichier principal
Vignette du fichier
PhysRevMaterials.8.033804.pdf (3.24 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04522806 , version 1 (27-03-2024)

Licence

Identifiants

Citer

Lakshmi Shenoy, Christopher D. Woodgate, Julie B. Staunton, Albert P. Bartók, Charlotte Becquart, et al.. Collinear-spin machine learned interatomic potential for Fe7Cr2Ni alloy. Physical Review Materials, 2024, Physical Review Materials, 8 (3), ⟨10.1103/physrevmaterials.8.033804⟩. ⟨hal-04522806⟩
40 Consultations
11 Téléchargements

Altmetric

Partager

More