Q-shear transformation for MQMAS and STMAS NMR spectra - Université de Lille Accéder directement au contenu
Article Dans Une Revue Journal of Magnetic Resonance Année : 2009

Q-shear transformation for MQMAS and STMAS NMR spectra


The multiple-quantum magic-angle spinning (MQMAS) and satellite-transition magic-angle spinning (STMAS) experiments refocus second-order quadrupolar broadening of half-integer quadrupolar spins in the form of two-dimensional experiments. Isotropic shearing is usually applied along the indirect dimension of the 2D spectra such that an isotropic projection free of anisotropic quadrupolar broadening can be obtained. An alternative shear transformation by a factor equal to the coherence level (quantum number) selected during the evolution period is proposed. Such a transformation eliminates chemical shift along the indirect dimension leaving only the second-order quadrupolar-induced shift and anisotropic broadening, and is expected to be particularly useful for disordered systems. This transformation, dubbed Q-shearing, can help avoid aliasing problems due to large chemical shift ranges and spinning sidebands. It can also be used as an intermediate step to the isotropic representation for expanding the spectral window of rotor-synchronized experiments.


Fichier non déposé

Dates et versions

hal-04559296 , version 1 (25-04-2024)



Ivan Hung, Julien Trebosc, Gina L. Hoatson, R. L. Vold, Jean-Paul Amoureux, et al.. Q-shear transformation for MQMAS and STMAS NMR spectra. Journal of Magnetic Resonance, 2009, Journal of Magnetic Resonance, 201, pp.81-86. ⟨10.1016/j.jmr.2009.08.007⟩. ⟨hal-04559296⟩
3 Consultations
0 Téléchargements



Gmail Mastodon Facebook X LinkedIn More