Early Movement Restriction Affects FNDC5/Irisin and BDNF Levels in Rat Muscle and Brain. - Université de Lille
Article Dans Une Revue International Journal of Molecular Sciences Année : 2024

Early Movement Restriction Affects FNDC5/Irisin and BDNF Levels in Rat Muscle and Brain.

Résumé

Interaction with the environment appears necessary for the maturation of sensorimotor and cognitive functions in early life. In rats, a model of sensorimotor restriction (SMR) from postnatal day 1 (P1) to P28 has shown that low and atypical sensorimotor activities induced the perturbation of motor behavior due to muscle weakness and the functional disorganization of the primary somatosensory and motor cortices. In the present study, our objective was to understand how SMR affects the muscle-brain dialogue. We focused on irisin, a myokine secreted by skeletal muscles in response to exercise. FNDC5/irisin expression was determined in hindlimb muscles and brain structures by Western blotting, and irisin expression in blood and cerebrospinal fluid was determined using an ELISA assay at P8, P15, P21 and P28. Since irisin is known to regulate its expression, Brain-Derived Neurotrophic Factor (BDNF) levels were also measured in the same brain structures. We demonstrated that SMR increases FNDC5/irisin levels specifically in the soleus muscle (from P21) and also affects this protein expression in several brain structures (as early as P15). The BDNF level was increased in the hippocampus at P8. To conclude, SMR affects FNDC5/irisin levels in a postural muscle and in several brain regions and has limited effects on BDNF expression in the brain.
Fichier principal
Vignette du fichier
ijms-25-03918-v2.pdf (3.04 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04601887 , version 1 (05-06-2024)

Licence

Identifiants

Citer

Orlane Dupuis, Julien Girardie, Melanie van Gaever, Philippe Garnier, Jacques-Olivier Coq, et al.. Early Movement Restriction Affects FNDC5/Irisin and BDNF Levels in Rat Muscle and Brain.. International Journal of Molecular Sciences, 2024, International Journal of Molecular Sciences, 25 (7), pp.3918. ⟨10.3390/ijms25073918⟩. ⟨hal-04601887⟩
36 Consultations
11 Téléchargements

Altmetric

Partager

More