A Shared-Frailty Spatial Scan Statistic Model for Time-to-Event Data. - Université de Lille Accéder directement au contenu
Article Dans Une Revue Biometrical Journal Année : 2024

A Shared-Frailty Spatial Scan Statistic Model for Time-to-Event Data.

Résumé

Spatial scan statistics are well-known methods widely used to detect spatial clusters of events. Furthermore, several spatial scan statistics models have been applied to the spatial analysis of time-to-event data. However, these models do not take account of potential correlations between the observations of individuals within the same spatial unit or potential spatial dependence between spatial units. To overcome this problem, we have developed a scan statistic based on a Cox model with shared frailty and that takes account of the spatial dependence between spatial units. In simulation studies, we found that (i) conventional models of spatial scan statistics for time-to-event data fail to maintain the type I error in the presence of a correlation between the observations of individuals within the same spatial unit and (ii) our model performed well in the presence of such correlation and spatial dependence. We have applied our method to epidemiological data and the detection of spatial clusters of mortality in patients with end-stage renal disease in northern France.
Fichier principal
Vignette du fichier
Biometrical J - 2024 - Frévent - A Shared‐Frailty Spatial Scan Statistic Model for Time‐to‐Event Data.pdf (1.38 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04679728 , version 1 (28-08-2024)

Licence

Identifiants

Citer

Camille Frevent, Mohamed-Salem Ahmed, Sophie Dabo-Niang, Michaël Genin. A Shared-Frailty Spatial Scan Statistic Model for Time-to-Event Data.. Biometrical Journal, 2024, Biomedical journal, 66 (5), pp.e202300200. ⟨10.1002/bimj.202300200⟩. ⟨hal-04679728⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More