Intelligent Monte Carlo: A New Paradigm for Inverse Polymerization Engineering - Université de Lille Accéder directement au contenu
Article Dans Une Revue Macromolecular Theory and Simulations Année : 2018

Intelligent Monte Carlo: A New Paradigm for Inverse Polymerization Engineering

Résumé

Traditional computational methods simulate the microstructure of polymer chains from input reaction conditions, but a need exists for predicting optimum reaction conditions in a computationally demanding multivariable space leading to the synthesis of predesigned microstructures and architectures. Herein, the intelligent Monte Carlo (IMC) approach, able to predict optimum reaction conditions for synthesizing copolymers with predefined, complex microstructures as input is introduced. This is rendered possible by a combination of kinetic Monte Carlo (KMC) simulation with artificial intelligence concepts, which enables a reasonably enhanced convergence to optimum reactions conditions. Chain shuttling polymerization is chosen as a first test case due to its complexity and the intricate multiblock microstructures that are formed; whose tailoring requires multiple parameters. The IMC approach locates optimum reaction conditions for the synthesis of olefinic multiblock copolymers with specific microstructures. This approach provides a new platform for identifying complex reaction conditions to “produce” and “tailor‐make” materials with precisely predefined microstructures and facilitates the development of meaningful structure‐property relationships.
Fichier principal
Vignette du fichier
IMC MTS Jan 25 2018 (as accepted) UWSpace upload Sept 15 2020.pdf (2.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03155986 , version 1 (20-05-2021)

Identifiants

Citer

Yousef Mohammadi, Mohammad Reza Saeb, Alexander Penlidis, Esmaiel Jabbari, Philippe Zinck, et al.. Intelligent Monte Carlo: A New Paradigm for Inverse Polymerization Engineering. Macromolecular Theory and Simulations, 2018, 27 (3), pp.1700106. ⟨10.1002/mats.201700106⟩. ⟨hal-03155986⟩
29 Consultations
49 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More