Optimisation du décodage par liste de vidéos corrompues basée sur une architecture d'apprentissage en profondeur - Université de Lille Accéder directement au contenu
Poster De Conférence Année : 2023

Optimisation du décodage par liste de vidéos corrompues basée sur une architecture d'apprentissage en profondeur

Résumé

This poster presents an optimized list decoding solution for videos corrupted by transmission errors. It is based on no-reference image quality assessment using a convolutional neural network (CNN) that effectively handles non-uniform distortions. At the end of a list decoding process, we evaluate the quality of each generated candidate image (without reference) in order to select the best one. When the transmission error occurs in an intra encoded image, our architecture has a decision accuracy of more than 98% against 46% for the original pre-trained CNN architecture. For errors in an inter encoded image, it's 79% versus 33%.
Cet poster présente une solution de décodage par liste optimisée pour des vidéos corrompues par des erreurs de transmission. Elle est basée sur l'évaluation de la qualité des images sans référence utilisant un réseau de neurones convolutif (CNN) qui gère efficacement les distorsions non uniformes. À l'issue d'un processus de décodage par liste, nous évaluons la qualité de chaque image candidate générée (sans référence) afin de sélectionner la meilleure. Lorsque l'erreur de transmission se produit dans une image intra, notre architecture a une précision de décision de plus de 98% contre 46% pour l'architecture CNN originale pré-entraînée. Pour les erreurs dans une image inter, c'est 79% contre 33%.
Fichier principal
Vignette du fichier
Yujing-ZHANG-Poster-IEMN UPHF.pdf (941.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04139241 , version 1 (23-06-2023)

Identifiants

  • HAL Id : hal-04139241 , version 1

Citer

Yujing Zhang, Stéphane Coulombe, François-Xavier Coudoux, Patrick Corlay. Optimisation du décodage par liste de vidéos corrompues basée sur une architecture d'apprentissage en profondeur. Mardi des chercheurs, Jun 2023, Valenciennes (Nord), France. 2023. ⟨hal-04139241⟩
66 Consultations
29 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More