Hierarchical classification and matching of mid-infrared spectra of paint samples for forensic applications. - Université de Lille
Article Dans Une Revue Talanta Année : 2022

Hierarchical classification and matching of mid-infrared spectra of paint samples for forensic applications.

Résumé

A novel fast and automatic methodology for the hierarchical classification and similarity matching of mid-infrared spectra of paint samples based on the principles of Soft Independent Modelling of Class Analogy (SIMCA) and on the definition and properties of the Mahalanobis distance is here proposed. This approach was tested in a so-called market study (i.e., targeting products largely accessible to the general public and conceived for a considerably wide range of usages) conducted across the surroundings of the city of Lille, in France, and has permitted not only to successfully achieve the chemical characterisation of most of the analysed samples but also to discover specific commonality patterns among specimens sharing the same chemical features.
Fichier principal
Vignette du fichier
S0039914022001564.pdf (23.56 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04512485 , version 1 (22-07-2024)

Licence

Identifiants

Citer

Raffaele Vitale, Giulia Spinaci, F. Marini, Philippe Marion, Martine Delcroix, et al.. Hierarchical classification and matching of mid-infrared spectra of paint samples for forensic applications.. Talanta, 2022, Talanta, 243, pp.123360. ⟨10.1016/j.talanta.2022.123360⟩. ⟨hal-04512485⟩
9 Consultations
2 Téléchargements

Altmetric

Partager

More